Bi - Invariant Sets and Measureshave Integer Hausdorff

نویسنده

  • DAVID MEIRI
چکیده

Let A; B be two diagonal endomorphisms of the d-dimensional torus with corresponding eigenvalues relatively prime. We show that for any A-invariant ergodic measure , there exists a projection onto a torus T r of dimension r dim , that maps-almost every B-orbit to a uniformly distributed sequence in T r. As a corollary we obtain that the Hausdorr dimension of any bi-invariant measure, as well as any closed bi-invariant set, is an integer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum field theory on fractal spacetime: a new regularisation method

Spacetime is modelled a s a fractal subset of R". Analysis on homogeneous sets with non-integer Hausdorff dimension is applied to the low-order perturbative renormalisation of quantum electrodynamics. This new regularisation method implements the Dirac matrices and tensors in R4 without difficulties, is gauge invariant, covariant and differs from dimensional regularisation in some aspects.

متن کامل

Hausdorff Dimension and Hausdorff Measure for Non-integer based Cantor-type Sets

We consider digits-deleted sets or Cantor-type sets with β-expansions. We calculate the Hausdorff dimension d of these sets and show that d is continuous with respect to β. The d-dimentional Hausdorff measure of these sets is finite and positive.

متن کامل

Invariant Approximations of the Maximal Invariant Set or ``Encircling the Square''

This paper offers a method for the computation of invariant approximations of the maximal invariant set for constrained linear discrete time systems subject to bounded, additive, disturbances. The main advantage of the method is that it generates invariant sets at any step of the underlying set iteration. Conditions under which the sequence of generated invariant sets is monotonically non–decre...

متن کامل

Dimensions of Some Fractals Defined via the Semigroup

We compute the Hausdorff and Minkowski dimension of subsets of the symbolic space Σm = {0, ..., m−1}N that are invariant under multiplication by integers. The results apply to the sets {x ∈ Σm : ∀ k, xkx2k · · ·xnk = 0}, where n ≥ 3. We prove that for such sets, the Hausdorff and Minkowski dimensions typically differ.

متن کامل

2 1 Ju n 20 12 DIMENSIONS OF SOME FRACTALS DEFINED VIA THE SEMIGROUP GENERATED

We compute the Hausdorff and Minkowski dimension of subsets of the symbolic space Σm = {0, ..., m−1} N that are invariant under multiplication by integers. The results apply to the sets {x ∈ Σm : ∀ k, xkx2k · · ·xnk = 0}, where n ≥ 3. We prove that for such sets, the Hausdorff and Minkowski dimensions typically differ.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996